Keyword

surface air pressure

257 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 257
  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in dry sclerophyll woodland using eddy covariance techniques. <br /><br /> The site was classified as box woodland, dominated by two main Eucalypt species:<em>Eucalyptus microcarpa</em> (Grey Box) and <em>Eucalyptus leucoxylon</em> (Yellow Gum).<br /> Elevation of the site is close to 165 m and mean annual precipitation from a nearby Bureau of Meteorology site measured 558 mm. Maximum temperatures ranged from 29.8°C (in January) to 12.6°C (in July), while minimum temperatures ranged from 14.2°C (in February) to 3.2°C (in July). Maximum temperatures varied on a seasonal basis by approximately 17.2°C and minimum temperatures by 11.0°C.<br /><br />The instrument mast is 36m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry. This data is also available at http://data.ozflux.org.au .

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station was established in August 2011 while the site supported tropical savanna. The site was part of a deforestation experiment measuring greenhouse gas exchange during conversion of forest to farmland. The land was being cultivated for watermelon production from 2013.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035°S and 140.65512°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5°. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO3, Urea, KCl, and NH4NO3 applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. <br> The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.<br />This data is also available at http://data.ozflux.org.au . <br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> Great Western Woodlands (GWW) comprise a 16 million&nbsp;ha mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220&nbsp;mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1&nbsp;ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. The flux station is located in salmon gum woodland.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is located on a low lying plain dominated by Mitchell Grass (<em>Astrebla</em> spp.). Elevation of the site is close to 250&nbsp;m and mean annual precipitation at a nearby Bureau of Meteorology site is 640&nbsp;mm. Maximum temperatures range from 28.4&nbsp;°C (in June/ July) to 39.1&nbsp;°C (in December), while minimum temperatures range from 11.2&nbsp;°C (in July) to 24.4&nbsp;°C (in December).</br> <br>The instrument mast is 5&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br> <br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out at the site in September 2008. Biomass harvest measured: mean live biomass 0.00&nbsp;gm<sup>-2</sup> (standard error: 0.00), mean standing dead biomass 163.42&nbsp;gm<sup>-2</sup> (standard error: 16.73), mean litter biomass 148.99&nbsp;gm<sup>-2</sup> (standard error: 21.32), total mean biomass 312.40&nbsp;gm<sup>-2</sup> (standard error: 30.80). Soil consists of: clay 14.47%, silt 51.23%, sand 34.30%.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by <em>Banksia</em> spp. mainly <em>Banksia menziesii</em>, <em>Banksia attenuata</em>, and <em>Banksia grandis</em> with a height of around 7&nbsp;m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10&nbsp;m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10&nbsp;%; and in summer these generally hold less than 2&nbsp;% moisture. The water table is at about 8.5&nbsp;m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14.8&nbsp;m tall, with the eddy covariance instruments mounted at 14.8&nbsp;m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500&nbsp;m east and west of the tower. <br/> <br/>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was situated within a wetland that flooded seasonally. The principle vegetation was <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation was approximately 4m, with a neighbouring Bureau of Meteorology station recording 1411mm mean annual precipitation.Maximum temperatures ranged from 31.3°C (in June and July) to 35.6°C (in October), while minimum temperatures ranged from 14.9°C (in July) to 23.9°C (in December and February). Maximum temperatures varied on a seasonal basis by approximately 4.3°C and minimum temperatures by 9.0°C.<br /> <br /> The instrument mast was 15m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry.<br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em>. Climate information comes from the nearby Pingelly BOM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445&nbsp;mm with highest rainfall in June and July of 81&nbsp;mm each month. Maximum and minimum annual rainfall is 775 and 217&nbsp;mm, respectively. Maximum temperatures range from 31.9&nbsp;°C (in Jan) to 15.4&nbsp;°C (in July), while minimum temperatures range from 5.5&nbsp;°C (in July) to 16.0&nbsp;°C (in Feb). The Noongar people are the traditional owners at Boyagin. <br />